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Notes 4. POWER SERIES

4.1 Power Series

Recall a series of functions is of the form
∑∞

j=j0
fj(x) where each fj is a function

defined on a common subset E of R. In practice there are two kinds of series of
functions which are important: Power series and trigonometric series. We shall
study power series in these notes and leave trigonometric series to MATH3060
Mathematical Analysis III.

By a power series we mean a series of the form
∑∞

j=0 aj(x− x0)j where aj ∈ R
and x0 is a fixed point in R. For instance,

∞∑
j=0

xj

j!
= 1 +

x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · · ,

∞∑
j=0

(−1)j

(2j)!
x2j = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · ,

and

∞∑
j=3

j(x− 2)j = 3(x− 2)3 + 4(x− 2)4 + 5(x− 2)5 + · · · ;

are power series. In the second example, it is understood that all aj = 0 for odd
j, and in the last example, a0 = a1 = a2 = 0. One should keep in mind that
inserting zeros between two summands of a series affects neither the convergence
nor the final sum of the series. On the other hand,

∞∑
n=1

1

n2 + x2
,

∞∑
j=0

1

j!
cos jx, and

∞∑
k=2

k!(ekx + xk)

log k
,

are not power series.
Given a series of functions, we would like to determine its pointwise conver-

gence and uniform convergence. For pointwise convergence, the tests that are
shown in 9.1 - 9.3 of Textbook are applicable. For uniform convergence, Weier-
strass M -Test and Cauchy criterion are the common tools. However, for power
series we have a very general and yet precise result. To formulate it one needs to
introduce the notion of the radius of convergence of a power series.

Let ρ := lim
n→∞

|an|1/n ∈ [0,∞] where lim
n→∞

xn denotes the limit superior of a se-

quence {xn}. (We learnt limit superior in last semester. Please look up your notes
to refresh your memory. See also the exercise.) Define the radius of convergence
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of
∑∞

j=0 aj(x− x0)j to be

R =


0, if ρ =∞,
1/ρ, if ρ ∈ (0,∞),
∞, if ρ = 0.

The following theorem is the main result for power series. In fact, it also holds
for complex variables.

Theorem 4.1. (Cauchy-Hadamard Theorem)

(a) When R ∈ (0,∞), the power series
∑∞

j=0 aj(x−x0)j converges absolutely at
every x ∈ (x0−R, x0 +R) and diverges at every x satisfying |x− x0 | > R.
Moreover, the convergence is uniform on every subinterval [a, b] ⊂ (x0 −
R, x0 +R).

(b) When R = ∞, the power series converges absolutely at every x ∈ R and
converges uniformly on any finite interval.

(c) When R = 0, the power series diverges at every x ∈ R \ {x0}.

Proof. (a) We show that for any r < R, the series is absolutely and uniformly
convergent on [x0 − r, x0 + r]. To this end we fix a small δ > 0 such that
(ρ + δ)r < 1. This is possible because ρr = r/R < 1. Then, as lim n

√
| an | = ρ,

there exists n0 such that n
√
| an | ≤ ρ+ δ, ∀ n ≥ n0. For x ∈ [x0 − r, x0 + r], we

have

n
√
| an(x− x0)n | = n

√
| an | |x− x0 |

≤ n
√
| an | r

≤ (ρ+ δ)r < 1, ∀ n ≥ n0.

Taking α = (ρ + δ)r, we have | an(x − x0)
n | ≤ αn and

∑∞
n=0 α

n < +∞. By
Weierstrass M -Test we conclude that

∑∞
j=0 aj(x− x0)j converges absolutely and

uniformly on [x0 − r, x0 + r].
When x1 satisfies |x1 − x0| > R, assume it is x1 − x0 > R, say. Fix an ε0 > 0

such that (ρ − ε0)(x1 − x0) > 1. This is possible because ρ(x1 − x0) > ρR = 1.
There exists n1 and a subsequence {anj

} of {an} such that |anj
|1/nj ≥ ρ − ε0,

∀ nj ≥ n1. Then

nj

√
| anj

(x1 − x0)nj | = | anj
|1/nj(x1 − x0) ≥ (ρ− ε0)(x1 − x0) > 1.

It shows that { an(x1− x0)n } does not tend to zero, so the power series diverges.
The proofs of (b) and (c) are essentially contained in the above proof. We

leave them as an exercise.
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We point out another way to evaluate the radius of convergence is by the
formula

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
provided the limit exists. You may prove it as an exercise.

We observe that termwise differentiation and integration of a given power
series yield power series:

∞∑
j=0

(j + 1)aj+1x
j and

∞∑
j=1

aj−1
j
xj.

It is routine to check that these two series have the same radius of convergence
as the original one. (Indeed, suppose that ρ = limj→∞ |aj|1/j exists and belongs
to (0,∞). For ε > 0, there exists some n0 such that ρ− ε/2 ≤ |aj|1/j ≤ ρ− ε/2,
for all n ≥ n0. It follows that (ρ − ε/2)1+1/j ≤ |aj+1|1/j ≤ (ρ + ε/2)1+1/j. As
limj→∞(ρ+ε/2)1/j = 1, we can find some n1 ≥ n0 such that (ρ+ε/2)1+1/j ≤ ρ+ε

and ρ− ε ≤ (ρ− ε/2)1+1/j for all n ≥ n1. Therefore, for these n, |a1/jj+1 − ρ| < ε.

We have shown that limj→∞ |aj+1|1/j = ρ. The j-th term in the series obtained
from differentiation is given by (j + 1)aj+1. We have limj→∞ |(j + 1)aj+1|1/j =
limj→∞ |j + 1|1/j limj→∞ |aj+1|1/j = limj→∞ |aj+1|1/j = ρ, so this derived series
has the same radius of convergence as the original one. The other cases can be
treated similarly.) Since the partial sums of a power series are polynomials, in
particular they are continuous on [x − 0 − r, x0 + r] for r < R. By uniform
convergence the power series is a continuous function on x0−R, x0 +R). In fact,
using the “exchange” theorems in Notes 3, we arrive at a strong conclusion.

Theorem 4.2. Every power series is a smooth function on (x0 − R, x0 + R).
Moreover, termwise differentiations and integrations commute with the summa-
tion.

Cauchy-Hadamard theorem says nothing on the convergence of a power series
at its “boundary points”. Let us consider an example.

Example 4.1. We start with the “mother” geometric series

∞∑
j=0

(−1)jxj = 1− x+ x2 − x3 + x4 − · · ·

it is clear that its radius of convergence is equal to 1. Integrating both sides from
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0 to x ∈ (−1, 1), we get the “grandmother”

∞∑
j=1

(−1)j−1xj

j
= x− x2

2
+
x3

3
− x4

4
+ · · · .

Integrating once more yields the “great grandmother”

∞∑
j=2

(−1)j−2xj

(j − 1)j
=
x2

2
− x3

2× 3
+

x4

3× 4
− x5

4× 5
+ · · · .

On the other hand, by differentiating the mother we get the “child”

∞∑
j=0

(−1)j+1(j + 1)xj = −1 + 2x− 3x2 + 4x3 − · · · .

According to Cauchy-Hadamard theorem these series are all convergent in (−1, 1)
and divergent in (−∞,−1)∪(1,∞). At the boundary points 1 and −1 they could
be convergent or divergent. Indeed, both the “mother” and the “child” diverge at
the boundary points, the “grandmother” converges at 1 but diverges at −1, and
the “great grandmother” converges at both ends. In general, when one family
member is convergent at a boundary point, its ancestor is also convergent at the
same point. (Why?) But the converse is not necessarily true.

From this example you can see that the convergence of a power series at the
boundary points is a delicate matter and must be discussed case by case. How-
ever, there is a general result, namely, Abel’s limit theorem. We know that a
power series s(x) ≡

∑∞
j=0 aj(x − x0)j is smooth and in particular a continuous

function on (−R,R) when R is positive. In case the numerical series
∑∞

j=0 ajR
j

is convergent, one naturally wonders whether s(x) extends to be a continuous
function on (−R,R] by setting s(R) =

∑∞
j=0 ajR

j. Similar question holds at
x = −R. The following theorem gives an affirmative answer to this question.

The rest of this section is for optional reading.

Theorem 4.3. (Abel’s Limit Theorem) Let the radius of convergence of∑∞
j=0 aj(x− x0)j be R ∈ (0,∞). If

∑∞
j=0 ajR

j is convergent, then

lim
x→R−

s(x) =
∞∑
j=0

ajR
j

Proof. Without loss of generality we take x0 = 0 and R = 1. Let sn(x) =∑n
j=0 ajx

j, s(x) =
∑∞

j=0 ajx
j, for x ∈ (−R,R), sn =

∑n
j=0 aj and s∗ =

∑∞
j=0 aj.
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(Because the summation starts from zero, the n-th partial sum starts at s0 = a0.)
We have the identity

(1− x)
∞∑
j=0

sjx
j =

∞∑
j=0

ajx
j, x ∈ (−1, 1)

which could be verified directly. Taking advantage of this identity we have

s(x)− s∗ = (1− x)
∞∑
j=0

sjx
j − (1− x)s∗

∞∑
j=0

xj

= (1− x)
∞∑
j=0

(sj − s∗)xj.

As sn → s∗, for every ε > 0, there exists N such that |sn − s∗| < ε/2 for any
n ≥ N . Therefore, for x ∈ (0, 1),

|s(x)− s∗| ≤ (1− x)
N∑
j=0

|sj − s∗|xj + (1− x)

∣∣∣∣∣
∞∑

j=N+1

(sj − s∗)xj
∣∣∣∣∣

≤ (1− x)
N∑
j=0

|sj − s∗|+ (1− x)
ε

2

∞∑
j=N+1

xj

≤ C1(1− x) +
ε

2

where C1 =
∑N

j=0 |sj − s∗| ∈ R. It follows that for x satisfying 0 < 1 − x < δ,
where C1δ < ε/2, we have

|s(x)− s∗| ≤ ε

2
+
ε

2
= ε,

and the theorem follows.

A main source for power series is from Taylor’s expansion. For a function f
which is smooth at a point x0, we define the Taylor series (or Taylor’s expansion)
of this function at x0, Tf(x;x0), to be the power series

∞∑
j=0

f (j)(x0)

j!
(x−x0)j = f(x0)+

f ′(x0)

1!
(x−x0)+

f ′(x0)

2!
(x−x0)2+

f (3)(x0)

3!
(x−x0)3+· · · .

A natural question arises:

Question 1 Is f(x) = Tf(x;x0)?
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A general observation is that whenever f(x) is given by a power series
∑

j aj(x−
x0)

j, it is smooth on (x0 − R, x0 + R). Since termwise differentiation is allowed,
one can show that f (n)(x0) = n!an, so the Taylor series of f at x0 coincides with
the power series, see exercise. However, in our mind the question is asked for
functions given in closed form. We do know some examples that it is true, this
includes ex, cosx, sinx, etc, but that is it. After some thoughts, a cautious reader
may break this question into two more precise ones:

Question 2 When f is smooth in an open interval containing x0, does Tf(x;x0)
have a positive radius of convergence?

Question 3 When Tf(x;x0) has a positive radius of convergence, is f(x) equal
to Tf(x;x0) in some open interval containing x0?

It turns out the answers to both questions are negative. Without going into
details, it suffices to point out that the power series of the smooth function
exp(−1/x2) at x0 = 0 is identically zero. So its radius of convergence is infinity
and yet this function is positive away from the origin. This example gives a neg-
ative answer to Question 3.

Let f be a function defined on (a, b) and x0 be a point in (a, b). We call f
to be analytic at x0 if (i) Tf(x;x0) has a positive radius convergence and (ii)
Tf(x;x0) = f(x) in an open subinterval of (a, b) which contains x0. The function
f is analytic on (a, b) if it is analytic at every point of (a, b). The collection of all
analytic functions on (a, b), just like the collection of all continuous functions or
differentiable functions, forms a vector space which is closed under product and
division (provided the denominator is nonzero). In fact, it is a proper subspace
of the space of all smooth functions. Unlike a general smooth function, Ques-
tions 2 and 3 always have affirmative answers for an analytic function. In this
sense analytic functions are genuinely “polynomials of infinite degree”. Indeed,
analytic functions are precisely those functions which can be extended from the
real region to the complex plane as a complex differentiable function.

Any examples of analytic functions except polynomials? Sure. Here are three:

(a) expx =
∑∞

j=0

xj

j!
, x ∈ R.

(b) cosx =
∑∞

j=0

(−1)jx2j

(2j)!
, x ∈ R.

(c) sinx =
∑∞

j=0

(−1)jx2j+1

(2j + 1)!
, x ∈ R.
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(d)
1

1 + x
=
∑∞

j=0(−1)jxj, x ∈ (−1, 1).

These three functions are analytic at x0 = 0. The validity of (a), (b) and
(c) was established in the course of defining the exponential and trigonometric
functions, see Notes 3. For (d) it follows from the elementary formula

1− x+ x2 − x3 + · · ·+ (−1)nxn =
1 + (−1)nxn+1

1 + x

by letting n→∞.

It is interesting to note that some nontrivial identities can be obtained by
applying Theorem 4.2 and Abel’s Limit Theorem to (c). First of all, for any
x ∈ (0, 1), by integrating both sides of (c) from 0 to x, we get

log(1 + x) =
∞∑
j=1

(−1)j−1xj

j
, x ∈ (−1, 1).

At x = 1, the series
∑∞

j=1

(−1)j+1

j
is convergent, it follows from the continuity of

the logarithmic function at 1 and Abel’s Limit Theorem that

lim
x→1−

log(1 + x) = lim
x→1−

∞∑
j=1

(−1)j+1xj

j
=
∞∑
j=1

(−1)j+1

j
.

In other words, we have

log 2 = 1− 1

2
+

1

3
− 1

4
+ · · · .

Further, let us replace x in (c) by x2 (x2 < 1 whenever |x| < 1). Then we

have
1

1 + x2
=
∑∞

j=0(−1)jx2j, x ∈ (−1, 1). After one integration we get

Arctan x =
∞∑
j=0

(−1)jx2j+1

2j + 1
.

Letting x → 1− and by Abel’s Limit Theorem again, we obtain the following
formula which was discovered by Leibniz:

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · .

An alternative, elementary proof of these identities without using Abel’s Limit
Theorem is also available, see exercise.



2018 Spring MATH2060A Mathematical Analysis II 8

4.2 Newton’s Binomial Theorem

This section is for optional reading.

In addition to the examples (a)-(c) in the last section, one would like to have
more examples of analytic functions. We shall show that the power functions
(1 + x)α are analytic at the origin. In order to have a detailed discussion we
separate the study into two parts. In the first part we study the convergence
properties of the Taylor’s series of these functions. Analyticity will be estab-
lished in the second part.

For any real number α, consider the power series

∞∑
j=0

cjx
j,

where

cj =
α(α− 1)(α− 2) · · · (α− j + 1)

j!
, j ∈ N,

and c0 = 1. We call this power series a binomial series and cn the n-th binomial
coefficient of the binomial series. When α ∈ {0, 1, 2, 3, · · · }, this power series
becomes a polynomial. In the following we consider α ∈ R \ {0, 1, 2, · · · } so that
it has infinitely many non-zero binomial coefficients.

Theorem 4.4. For α ∈ R\{0, 1, 2, · · · }, the radius of convergence of any binomial
series is 1. Moreover, it

(i) converges absolutely at x = ±1 when α > 0,
(ii) diverges at x = ±1 when α ≤ −1,
(iii) converges conditionally at x = 1 and diverges at x = −1 when α ∈

(−1, 0).

Proof. We have

lim
n→∞

∣∣∣ cn
cn+1

∣∣∣ = lim
n→∞

∣∣∣ n+ 1

α− n

∣∣∣ = 1.

It follows that the radius of convergence is equal to 1, see no.5 in Exercises 9.4 of
Text.

When α > 0 at x = ±1, we have, for n > α + 1∣∣∣cn+1x
n+1

cnxn

∣∣∣ =
n− α
n+ 1

= 1− α + 1

n+ 1
.
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As α > 0, we can find some β ∈ (1, α + 1) and n0 such that at x = ±1∣∣∣cn+1x
n+1

cnxn

∣∣∣ < 1− β

n
, ∀n ≥ n0.

By Raabe’s Test, the binomial series converges absolutely at x = ±1.
Next, when α ≤ −1 and x = ±1,

|cnxn| = |cn| =
|α|
1

(|α|+ 1)

2

(|α|+ 2)

3
· · · (|α|+ n− 1)

n
≥ |α| > 1,

so the binomial series is divergent.
Finally, consider α ∈ (−1, 0) and x = −1. In this case every term of this

series is positive, and we have

cnx
n = |cn|

= |α|(|α|+ 1)

1

(|α|+ 2)

2
· · · (|α|+ n− 1)

n− 1

1

n

≥ |α| 1
n
.

As
∑

1/n =∞, the series is also divergent.
When x = 1, the series is alternating. We shall apply the Leibniz’ Alternating

Series Test. For this purpose we need to verify (i) |cn| is decreasing and (ii)
lim
n→∞

|cn| = 0. (i) is easy:

|cn+1|
|cn|

=
|α|+ n

n+ 1
< 1,

as |α| < 1. As for (ii), we observe

|cn| =
(

1− 1 + α

1

)(
1− 1 + α

2

)
· · ·
(

1− 1 + α

n

)
=

n∏
k=1

(
1− 1 + α

k

)
.

To show (ii) it suffices to show

log |cn| =
n∑
j=1

log
(

1− 1 + α

j

)
→ −∞, as n→∞

This could be proved by the Integral Test. Here we use an elementary argument.
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First of all, observe that we have

log(1− x) = −
∞∑
j=1

xj

j
, x ∈ (−1, 1).

Thus,

| log(1− x) + x| =
∣∣∣ ∞∑
j=2

xj

j

∣∣∣
≤ x2

(1

2
+
x

3
+
x2

4
+ · · ·

)
≤ x2(1 + x+ x2 + · · · )

≤ x2

1− x
.

It follows that ∣∣∣ log
(
1− 1 + α

j

)
+

1 + α

j

∣∣∣ ≤ 2(1 + α)2

j2
.

for j ≥ 2(1+α), that’s, 1− (1+α)/j ≥ 1
2
. As

∑
j−2 is convergent, this inequality

shows that −
∑

log
(
1 − (1 + α)/j

)
and

∑
(1 + α)/j has the same convergence

property, so
∑

log
(
1− (1 + α)/j

)
= −∞.

Now we come to the main result of this section. Recall when α ∈ {0, 1, 2, 3, · · · },
the binomial theorem

(1 + x)α =
α∑
j=0

cjx
j,

where the binomial coefficients cj’s is defined in the previous section, has been
known for a long long time. Notice that for any natural number α = n, cj = (nj ),
where j ∈ {0, 1, . . . , n}. It was the insight of Newton who found the extension
for other values of α.

Theorem 4.5. (Newton’s Binomial Theorem) For α ∈ R \ {0, 1, 2, 3, · · · } ,
we have

(1 + x)α =
∞∑
j=0

cjx
j, ∀x ∈ (−1, 1), (4.1)

where the convergence is uniform on any [a, b] in (−1, 1). Moreover, the con-
vergence is uniform on [−1, 1] when α > 0, and on [−a, 1], a ∈ (0, 1), when
α ∈ (−1, 0).

The n-th Taylor’s polynomial of the function (1+x)α at the origin is precisely
the n-th partial sum of the binomial series for α. Thus Taylor’s theorem provides



2018 Spring MATH2060A Mathematical Analysis II 11

a link between this function and the corresponding binomial series. In the fol-
lowing proof we see how the Taylor’s Theorem with Integral Remainder works
better than the Taylor’s Theorem with Mean Value.

Proof. We will consider positive values of x first. By Taylor’s Theorem with
Integral Remainder in Notes 2 or (7.3.18) in Text, for any α ∈ R,

(1 + x)α −
n∑
k=0

ckx
k = (n+ 1)cn+1

∫ x

0

(1 + t)α−n−1(x− t)ndt.

If x ∈ [0, b], b < 1, we have, for n+ 1 > α,

(n+ 1)|cn+1|
∫ x

0

(1 + t)α−n−1(x− t)ndt

≤ (n+ 1)|cn+1|
∫ x

0

(x− t)ndt ≤ |cn+1|bn+1.

By Theorem 4.4,
∑
cjb

j is convergent, so |cn+1|bn+1 tends to 0 as n→∞. Thus,
for every ε > 0, there exists n0 such that for any α ∈ R,

|(1 + x)α −
n∑
j=0

cjx
j| ≤ |cn+1|bn+1 < ε, ∀n ≥ n0, ∀x ∈ [0, b].

We have shown that for any real α, (4.1) holds and the convergence is uniform
on [0, b] for any b < 1.

Next, consider negative values of x. When x ∈ [a, 0], a > −1, we use the
Mean-Value Theorem to get∣∣∣cn+1

∫ x

0

(1 + t)α−n−1(x− t)ndt
∣∣∣ = (n+ 1)|cn+1|

∫ 0

x

(1 + t)α−n−1(|x|+ t)ndt

= (n+ 1)|cn+1|(1 + ξx)α−n−1(|x| − ξ|x|)n
∫ 0

x

dt

= (n+ 1)|cn+1|(1 + ξx)α−1
( 1− ξ

1 + ξx

)n
|x|n+1,

for some ξ ∈ (0, 1). As x ∈ (−1, 0), 1− ξ ≤ 1 + ξx, so∣∣∣cn+1

∫ x

0

(1 + t)α−n−1(x− t)ndt
∣∣∣ ≤M(n+ 1)|cn+1||x|n+1,

where M = sup
{

(1 + ξx)α−1 : ξ ∈ (0, 1), x ∈ [a, 0]
}

. By Theorem 4.4 the

radius of convergence of
∑
cjx

j is equal to one. It implies that the radius of
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convergence of the series
∑

(j + 1)cjx
j is also equal to one. Thus

∑
(j + 1)cja

j

converges absolutely and consequently (n + 1)cn+1|an+1| → 0 as n → ∞. As
before we conclude that

∑
cjx

j converges uniformly to (1 + x)α on [a, 0] for any
real α.

When α > 0, ∣∣∣∣cn+1

cn

∣∣∣∣ =
n− α
n+ 1

= 1− 1 + α

n+ 1
,

for all n > α. When α > 0, we can fix some β ∈ (0, α) such that∣∣∣∣cn+1

cn

∣∣∣∣ ≥ 1− 1 + β

n

for all n ≥ n1. By Raabe’s test,
∑∞

1 |cn| converges. It follows from the M-test
that

∑∞
1 cnx

n converges uniformly on [−1, 1].
Finally, when α ∈ (−1, 0), the series is alternating. For ε > 0, there exists n0

such that |cn| < ε for all n ≥ n0. Using this fact, for x ∈ [0, 1], |
∑n

j=m+1 cjx
j| <

ε,∀n,m ≥ n0,∀x ∈ [0, 1]. Hence the series converges uniformly on [0, 1].

4.3 Euler’s Formula for Negative Powers

This section is for optional reading.

Although we have proved many criteria on the convergence of infinite series
of numbers, seldom did we evaluate their sums. In this section we discuss a well-
known summation formula for negative powers discovered by Euler in 1735, when
he was twenty-eight.

From high school we learnt how to sum up a geometric progression. It led to
the formula

1

1− a
= 1 + a+ a2 + a3 + · · · , a ∈ (−1, 1).

In particular, taking a = 1/2 and −1/2 yields

2 = 1 +
1

2
+

1

4
+

1

8
+ · · · ,

and
2

3
= 1− 1

2
+

1

4
− 1

8
+ · · · .
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From the previous sections we know more, for instance,

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · ,

and

log 2 = 1− 1

2
+

1

3
− 1

4
+ · · · .

Euler’s formula gives a closed form for the sum

Ek =
∞∑
n=1

1

nk
,

when k is an even number. For instance, we have

π2

6
= 1 +

1

4
+

1

9
+

1

16
+ · · · .

Euler discovered this formula by a wonderful method based on analog think-
ing. To describe it we start with some simple facts on algebraic equations. Let a
polynomial of degree n be given by

p(x) = 1 + a1x+ a2x
2 + · · ·+ anx

n.

Recall that x0 is a root of p if p(x0) = 0. The multiplicity of a root is defined
to be the number m that satisfies p(x0) = p′(x0) = · · · = p(m−1)(x0) = 0 but
p(m)(x0) 6= 0. A root of multiplicity one is called a simple root and a root of
multiplicity two is called a double root. The multiplicity appears in the power in
the factorization of the polynomial. For instance, the polynomial x3 + x2− x− 1
has a double root −1 and a simple root 1. We have the factorization

x3 + x2 − x− 1 = (x+ 1)2(x− 1).

Of course, a polynomial may admit complex roots so complete factorization over
the real field is not always possible. For instance, for the polynomial x3−6x2+x−6
we stop at (x2 + 1)(x− 6). However, suppose now that the polynomial of degree
n p(x) has exactly n many real simple roots α1, · · · , αn 6= 0. By comparing the
coefficients of the constant term we have the factorization formula

1 + a1x+ a2x
2 + · · ·+ anx

n =
n∏
k=1

(
1− x

αk

)
.
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By comparing the coefficients of xk, k = 1, · · · , n from both sides, we get

a1 = −
∑
j

1

αj
,

a2 =
∑
i<j

1

αiαj
,

and

ak = (−1)k
∑

i1<···<ik

1

αi1 · · ·αik
, k = 1, · · · , n,

in general.
Now, consider the Taylor expansion for the sine function,

sinx = x− x3

3!
+
x5

5!
− · · · ,

which is valid for all x in R. The function

sinx

x
= 1− x2

3!
+
x4

5!
− x6

7!
+ · · ·

(set sinx/x = 1 at x = 0) is smooth on R. Euler boldly regarded sinx/x as a
polynomial of infinite degree and asserted that all roots of sinx/x = 0 are real,
simple and given by ±kπ, k ≥ 1. Moreover, parallel to the factorization above,
one has

sinx

x
=
∞∏
k=1

(
1− x

kπ

)(
1 +

x

kπ

)
=
∞∏
k=1

(
1− x2

k2π2

)
(4.2)

By comparing the coefficients of x2 in this infinite product with the Taylor’s series
of sin x/x, he got

π2

6
=
∞∑
k=1

1

k2
.

By comparing the coefficients of x4, he got

π4

90
=
∞∑
k=1

1

k4

after some manipulations. Going up step by step, all E2k could be computed by
looking at the coefficients of x2m together with E2(k−1), · · · , and E2.

The formula (4.2) was first obtained in a formal way. Years later, Euler jus-
tified it in rigorous terms. His proof used complex variables but the essential
idea could be carried entirely out in the real field. There are other proofs us-
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ing, for instance, Fourier series. The following “real” proof is taken from O.
Hijab, Introduction to Calculus and Classical Analysis, Springer-Verlag, 2007. In
this formula the sine function is replaced by the hyperbolic sine to the same effect.

Proposition 4.6.

sinh πx

πx
=
∞∏
n=1

(
1 +

x2

n2

)
, ∀x ∈ R. (4.3)

(Set sinh πx/πx = 1 at x = 0.) Recall that sinhx = (ex−e−x)/2 is the hyperbolic
sine function.

Proof. We start with an identity of factorization: For a, b > 0,

a2n − b2n = (a2 − b2)
n−1∏
k=1

(
a2 − 2ab cos

kπ

n
+ b2

)
(Exercise). So(

1 +
πx

2n

)2n
−
(

1− πx

2n

)2n
2πx

=

(
1 +

πx

2n

)2
−
(

1− πx

2n

)2
2πx

×
n−1∏
k=1

[(
1 +

πx

2n

)2
− 2
(

1 +
πx

2n

)(
1− πx

2n

)
cos

kπ

n
+
(

1− πx

2n

)2]
=

1

n

n−1∏
k=1

[
2
(

1 +
π2x2

4n2

)
− 2
(

1− π2x2

4n2

)
cos

kπ

n

]
=

1

n

n−1∏
k=1

[
2
(

1 +
π2x2

4n2

)(
sin2 x+ cos2 x

)
− 2
(

1− π2x2

4n2

)(
cos2

kπ

2n
− sin2 kπ

2n

)]
=

1

n

n−1∏
k=1

(
4 sin2 kπ

2n
+
π2x2

n2
cos2

kπ

2n

)
Letting x→ 0, an application of L’Hospital’s rule yields

1 =
1

n

n−1∏
k=1

4 sin2 kπ

2n
.

By termwise division,(
1 +

πx

2n

)2n
−
(

1− πx

2n

)2n
2πx

=
n−1∏
k=1

[
1 +

x2

k2
ϕ
(kπ

2n

)]
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where ϕ(t) = t2 cot2 t. Using tan t ≥ t, we see that ϕ(t) ≤ 1 on (0, π/2). There-
fore, (

1 +
πx

2n

)2n
−
(

1− πx

2n

)2n
2πx

≤
n−1∏
k=1

(
1 +

x2

k2

)
≤

∞∏
k=1

(
1 +

x2

k2

)
.

Let n→∞,
sinhπx

πx
≤
∞∏
k=1

(
1 +

x2

k2

)
.

On the other hand, fix n1 so that(
1 +

πx

2n

)2n
−
(

1− πx

2n

)2n
2πx

≥
n1−1∏
k=1

(
1 +

x2

k2
ϕ
(kπ

2n

))
, ∀n ≥ n1.

Letting n→∞,
sinhπx

πx
≥

n1−1∏
k=1

(
1 +

x2

k2

)
and

sinhπx

πx
≥
∞∏
k=1

(
1 +

x2

k2

)
follows by letting n1 →∞.

Taking log of both sides of (4.3) and using the continuity of the logarithmic
function, we have

log sinh πx− log(πx) = log lim
n→∞

n∏
k=1

(
1 +

x2

k2

)
= lim

n→∞
log

n∏
k=1

(
1 +

x2

k2

)
= lim

n→∞

n∑
k=1

log
(

1 +
x2

k2

)
=

∞∑
k=1

log
(

1 +
x2

k2

)
.
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We claim the series on the right hand side is uniformly convergent on (0,M ] for
all M > 0. Indeed, by the mean-value theorem

log
(

1 +
x2

k2

)
=

k2

k2 + c2
x2

k2
,

for some c between 1 and x2/k2. Therefore,

0 < log
(

1 +
x2

k2

)
≤ M2

k2
, ∀x ∈ (0,M ].

Taking bk = M2/k2 and applying M -Test we obtain the result as claimed. Fur-
thermore, the series obtained by differentiating

∑
k log(1 + x2/k2) whose general

term is
k2

k2 + x2
2x

k2

also converges uniformly on every (0,M ]. By the “exchange theorem” it is legal
to differentiate both sides of

log sinh πx− log πx =
∞∑
k=1

log
(

1 +
x2

k2

)
to get

π cothπx− 1

x
=
∞∑
n=1

2x

n2 + x2
, x 6= 0,

or
π cothπ

√
x√

x
− 1

x
=
∞∑
n=1

2

n2 + x
, x > 0,

We would like to expand the left hand side of this expression into a Taylor series.
First, consider the function

τ(x) =

{ x

1− e−x
, x 6= 0

1, x = 0
.

This function is the reciprocal of the power series

1− e−x

x
=
∞∑
k=0

(−1)k
xk

(k + 1)!
, ∀x ∈ R.

According to a problem in Ex 12, we can expand it as a power series at 0,

τ(x) =
∞∑
n=0

βn
n!

xn,
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where β0 = 1, β1 = 1/2, β2 = 1/6, β3 = 0, β4 = −1/30, · · · , etc. Observing
that

x

2
coth

x

2
= τ(x)− x

2
,

we have
x

2
coth

(x
2

)
= 1 +

∞∑
n=2

βn
n!

xn.

As the left hand side of this identity is an even function, β2n+1 = 0,∀n ≥ 1 and

x

2
coth

(x
2

)
− 1 =

∞∑
n=1

β2n
(2n)!

x2n.

Finally we conclude

1

2

∞∑
n=1

β2n
(2n)!

(2π)2nxn−1 =
∞∑
n=1

1

n2 + x
.

By differentiating both sides of this identity k − 1 many times and then setting
x = 0 (uniform convergence after differentiation is easy to verify), we finally
obtain

Theorem 4.7 (Euler’s Formula). For all k ≥ 1,

∞∑
n=1

1

n2k
=

(−1)k−1

2

β2k
(2k)!

(2π)2k.

In the exercise you are asked to show that βk is equal to bk, the k-th Bernoulli
number introduced in Notes 2 for k ≥ 2. Despite the effort of many mathemati-
cians, little is known for Ek when k is odd. It was proved as late as 1979 that E3

is an irrational number. You may look up the expository paper, “Euler and his
work on infinite series”, Bulletin of AMS, 515-539, 2007, by V.S. Varadarajan for
more.

It is interesting to observe that Ek are special values of the Riemann zeta
function ζ defined by

ζ(x) =
∞∑
n=1

1

nx
, x > 1.

It is not hard to see that this series converges uniformly on [a,∞) for each a > 1
and ζ is smooth on (1,∞). (In fact, the zeta function can be defined in z ∈
C/{1}.) Thus we have Ek = ζ(k). It is related to the Gamma function Γ by the
relation

ζ(x) =
1

Γ(x)

∫ ∞
0

tx−1

et − 1
dt.
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Using this relation one could obtain another proof of Euler’s formula. Finally, we
point out that the the zeta function has deep relationship with prime numbers.
The following identity was found by Euler:

ζ(x) =
1∏

p

(
1− 1

px

) ,
where the product is taken over all prime numbers. As limx→1+ ζ(x) = ∞, this
identity shows that there are infinitely many prime numbers. This result essen-
tially opens up a new branch of mathematics called analytic number theory.


